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Perception:
Motion Field Equations
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Last Time:

Hough Transform and RANSAC:

Computing optical flow
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Now: Computing 3D Velocity from 2D
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Now: Computing 3D Velocity from 2D
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Which direction is the camera going?
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Systematic Testing

Points from 
the original 
view
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Systematic Testing

Moving 
along z-axis 
(optical axis)
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Systematic Testing

Moving 
along z-axis 
(optical axis)
Opposite way
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Systematic Testing

Moving 
along x-axis
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Systematic Testing

Moving 
along y-axis
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Systematic Testing

Rotating 
along z-axis 
(optical axis)



12

Systematic Testing

Rotating 
along x-axis
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Systematic Testing

Rotating 
along y-axis
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Systematic Testing

Rotating 
along x-axis 
and y-axis
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Systematic Testing

Rotating 
along x-axis 
and y-axis, 
and 
translating
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Deriving Motion Field Equations
To be able to predict and extract information from these 
optical flow fields, we need to derive a model of the 
equations of motion for points on an image
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Projection Equations
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Motion Model
Camera is moving, the rest of the world 
is not moving i.e. static

3D point, in the 
(rotating) camera 
frame

Velocity of the point in 
the camera frame
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Motion Model
Camera is moving, the rest of the world 
is not moving i.e. static

Translational 
velocity in a 
inertial frame of 
reference

Angular 
velocity in a 
inertial frame 
of reference
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Motion Model
Camera is moving, the rest of the world 
is not moving i.e. static

Again we 
assume all 
points are 
calibrated

2D point on 
the image

2D velocity of the 
point
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The punchline is we can derive the motion field equations 
from these:

Motion Field Equations
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Motion Field Equations - Derivation

We rewrite this as:

Now to find the velocity on the image i.e. the motion field, 
we take the derivative of the 2D point:

With:
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Motion Field Equations - Derivation

From physics, velocity of a point in a rotating reference frame

Substitute and rearrange:
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Motion Field Equations - Derivation
Substitute and rearrange:

Rewrite this as:
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We now know the form of the Motion Field Equations:

Solving the Motion Field Equations

How do we solve it
• Case 1: Known depth – easy, simply use least squares
• Case 2: No translational velocity – also least squares
• Case 3: No angular velocity – slightly harder, but a form 

of least squares
• Case 4: Both translational and angular velocity with 

unknown depth – fairly difficult
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With known depth the equations reduce to:

Case 1: Known Depth

And this can be solved with a least squares problem:

THIS IS WHAT YOU WILL USE IN THE PROJECT
You will need to run RANSAC to make this robust.
How many points minimum do you need for this?
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With no translation the equations reduce to a very simple form:

Case 2: No Translational Velocity

And this can also be solved with a least squares problem:
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With no rotation the equations reduce to a different form than 
what we are used to:

Case 3: No Angular Velocity

This can be reformulated as a minimum eigenvalue problem:
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With no rotation the equations reduce to a different form than 
what we are used to:

Case 4: Everything Unknown

There is not too much we can do here as this is bilinear in our 
unknowns (depth and rotation). There are a few similar 
methods people have used to solve this:
• Method 1: Alternating minimization between V and Ω/Z
• Method 2: Marginalize out Ω/Z and exhaustively search for 
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When we don’t have any prior knowledge we are just left with 
the original equation:

Case 4: Everything Unknown

There is not too much we can do here as this is bilinear in our 
unknowns (depth and velocity). Velocity can only be recovered 
up to a scale. There are a few similar methods people have 
used to solve this:
• Method 1: Alternating minimization between V and Ω/Z [1]
• Method 2: Marginalize out Ω/Z and exhaustively search for 

V [2] 

[1] Optimal structure from motion: Local ambiguities and global estimates, Soatto and Brockett 1998 
[2] Subspace methods for recovering rigid motion I: Algorithm and implementation, Heeger and Jepson 1992
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We can rewrite the equation as:

Case 4: Everything Unknown



32

With this we can solve for V through exhaustive search since V
is in a bounded space (the sphere)

Case 4: Everything Unknown

A visualization of the loss function looks something like this:



33

Case 4: Everything Unknown
A visualization of the loss function looks something like this:
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Recap of Vision Thus Far
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Basic Assumptions
We take the thin lens model and approximate it as a pinhole 
model using calibration to make it good enough

Object In Scene

Z

P
p

d

Y y
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Projection Equations
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Projective Transformations
We learned about how to map 
points on the image to points on the 
image, specifically how planes 
transform
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Pose from Projective Transformations
Assuming the points are on the 
plane we can solve for the exact 
pose from the transformation 
parameters and calibration

This is 
arbitrary, can 
also use second 
column or 
average
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PnP and P3P
If we have more general 2D-3D correspondences, we need to 
solve the problem more generally

Minimal case is P3P, which is helpful if we want to do RANSAC
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PnP and P3P
For P3P, we needed to solve a fairly complicated polynomial and 
go back to solve for the distances

4 solutions for u,v

Substitute back in for di to and remove 
physically invalid solutions
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Procrustes
Once we have the distances in P3P we can use that to solve for the 
position and orientation of the points

Can also use Procrustes 
in other contexts e.g. 
solving ICP
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Procrustes
Once we have the distances in P3P we can use that to solve for the 
position and orientation of the points

Can also use Procrustes 
in other contexts e.g. 
solving ICP
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Epipolar Constraint
We also briefly went over how to get 3D pose from 2D-2D 
correspondences via the Essential matrix, and how to extract the 
pose from the essential matrix
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Optical Flow
Next we stepped back a bit and looked more at the image side and 
how to get correspondences, and some troubles that arise with that
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Outlier Rejection
Given the high potential for error in these methods, we learned 
about methods to separate ‘inliers’ from ‘outliers’ using the Hough 
Transform, but primarily RANSAC

See how many 
points are 
within the 
threshold

Hough RANSAC



46

Today: Motion Field Equations
And we learned how to take these things and derive motion 
models as opposed to merely static models, and we can estimate 
position and velocity
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Next Time
Now that we have estimates involving time. Given measurement 
error (even with something like RANSAC) there can still be 
estimation problems. Can we use temporal information to make 
things better? (Spoilers: yes). More importantly, how can we use 
temporal information in an optimal way while still being fast 
enough to be practical?
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